Очень часто в вычислениях должны использоваться не только положительные, но и отрицательные числа.
Число со знаком в вычислительной технике представляется путем представления старшего разряда числа в качестве знакового. Принято считать, что 0 в знаковом разряде означает знак «плюс» для данного числа, а 1 – знак «минус».
Выполнение арифметических операций над числами с разными знаками представляется для аппаратной части довольно сложной процедурой. В этом случае нужно определить большее по модулю число, произвести вычитание и присвоить разности знак большего по модулю числа.
Применение дополнительного кода позволяет выполнить операцию алгебраического суммирования и вычитания на обычном сумматоре. При этом не требуется определения модуля и знака числа.
Прямой код представляет собой одинаковое представление значимой части числа для положительных и отрицательных чисел и отличается только знаковым битом. В прямом коде число 0 имеет два представления «+0» и «–0».
Обратный код для положительных чисел имеет тот же вид, что и прямой код, а для отрицательных чисел образуется из прямого кода положительного числа путем инвертирования всех значащих разрядов прямого кода. В обратном коде число 0 также имеет два представления «+0» и «–0».
Дополнительный код для положительных чисел имеет тот же вид, что и прямой код, а для отрицательных чисел образуется путем прибавления 1 к обратному коду. Добавление 1 к обратному коду числа 0 дает единое представление числа 0 в дополнительном коде. Однако это приводит к асимметрии диапазонов представления чисел относительно нуля. Так, в восьмиразрядном представлении диапазон изменения чисел с учетом знака.
-128 <= x <= 127.
Таблица прямого, обратного и дополнительного кода 4-битных чисел.
Число | Прямой код | Обратный код | Дополнительный код |
-8 | — | — | 1000 |
-7 | 1111 | 1000 | 1001 |
-6 | 1110 | 1001 | 1010 |
-5 | 1101 | 1010 | 1011 |
-4 | 1100 | 1011 | 1100 |
-3 | 1011 | 1100 | 1101 |
-2 | 1010 | 1101 | 1110 |
-1 | 1001 | 1110 | 1111 |
00 | 10000000 | 11110000 | 0000 |
1 | 0001 | 0001 | 0001 |
2 | 0010 | 0010 | 0010 |
3 | 0011 | 0011 | 0011 |
4 | 0100 | 0100 | 0100 |
5 | 0101 | 0101 | 0101 |
6 | 0110 | 0110 | 0110 |
7 | 0111 | 0111 | 0111 |
Сложение и вычитание чисел со знаком в дополнительном коде
Если оба числа имеют n–разрядное представление, то алгебраическая сумма будет получена по правилам двоичного сложения (включая знаковый разряд), если отбросить возможный перенос из старшего разряда. Если числа принадлежат диапазону представимых данных и имеют разные знаки, то сумма всегда будет лежать в этом диапазоне. Переполнение может иметь место, если оба cлагаемых имеют одинаковые знаки.
Пример 1: 6 – 4 = ?
6 – положительное число с кодом 0110
–4 – отрицательное число с дополнительным кодом 1100
(перенос игнорируется): 6 – 4 = 2.
Пример 2: –5 + 2 = ?
2 – положительное число с кодом 0010
–5 – отрицательное число с дополнительным кодом 1011
Число с кодом 1101 является отрицательным, модуль этого числа имеет код 00112 = 310.
Назад: Представление данных и архитектура ЭВМ
Комментариев к записи: 5