Алгоритм Дейкстры нахождения кратчайшего пути

Алгоритм Дейкстры нахождения кратчайшего пути

Рассмотрим пример нахождение кратчайшего пути. Дана сеть автомобильных дорог, соединяющих области города. Некоторые дороги односторонние. Найти кратчайшие пути от центра города до каждого города области.

Для решения указанной задачи можно использовать алгоритм Дейкстры - алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Работает только для графов без рёбер отрицательного веса.

Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.

Кружками обозначены вершины, линиями – пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначен их вес – длина пути. Рядом с каждой вершиной красным обозначена метка – длина кратчайшего пути в эту вершину из вершины 1.
Задача

Инициализация

Метка самой вершины 1 полагается равной 0, метки остальных вершин – недостижимо большое число (в идеале - бесконечность). Это отражает то, что расстояния от вершины 1 до других вершин пока неизвестны. Все вершины графа помечаются как непосещенные.
Инициализация

Первый шаг

Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6. Обходим соседей вершины по очереди.

Первый сосед вершины 1 – вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме кратчайшего расстояния до вершины 1 (значению её метки) и длины ребра, идущего из 1-й во 2-ю, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2 (10000), поэтому новая метка 2-й вершины равна 7.
Шаг 1
Аналогично находим длины пути для всех других соседей (вершины 3 и 6).

Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит. Вершина 1 отмечается как посещенная.

Второй шаг

Шаг 1 алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.

Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.

Вершина 1 уже посещена. Следующий сосед вершины 2 — вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9, а 9 < 17, поэтому метка не меняется.
Шаг 2
Ещё один сосед вершины 2 — вершина 4. Если идти в неё через 2-ю, то длина такого пути будет равна 22 (7 + 15 = 22). Поскольку 22<10000, устанавливаем метку вершины 4 равной 22.

Все соседи вершины 2 просмотрены, помечаем её как посещенную.

Третий шаг

Повторяем шаг алгоритма, выбрав вершину 3. После её «обработки» получим следующие результаты.
Шаг 3

Четвертый шаг

Шаг 4

Пятый шаг

Шаг 5

Шестой шаг

Шаг 6
Таким образом, кратчайшим путем из вершины 1 в вершину 5 будет путь через вершины 1 - 3 - 6 - 5, поскольку таким путем мы набираем минимальный вес, равный 20.

 
Займемся выводом кратчайшего пути. Мы знаем длину пути для каждой вершины, и теперь будем рассматривать вершины с конца. Рассматриваем конечную вершину (в данном случае - вершина 5), и для всех вершин, с которой она связана, находим длину пути, вычитая вес соответствующего ребра из длины пути конечной вершины.
Так, вершина 5 имеет длину пути 20. Она связана с вершинами 6 и 4.
Для вершины 6 получим вес 20 - 9 = 11 (совпал).
Для вершины 4 получим вес 20 - 6 = 14 (не совпал).
Если в результате мы получим значение, которое совпадает с длиной пути рассматриваемой вершины (в данном случае - вершина 6), то именно из нее был осуществлен переход в конечную вершину. Отмечаем эту вершину на искомом пути.
Далее определяем ребро, через которое мы попали в вершину 6. И так пока не дойдем до начала.
Если в результате такого обхода у нас на каком-то шаге совпадут значения для нескольких вершин, то можно взять любую из них - несколько путей будут иметь одинаковую длину.

 

Реализация алгоритма Дейкстры

Для хранения весов графа используется квадратная матрица. В заголовках строк и столбцов находятся вершины графа. А веса дуг графа размещаются во внутренних ячейках таблицы. Граф не содержит петель, поэтому на главной диагонали матрицы содержатся нулевые значения.

1 2 3 4 5 6
1 0 7 9 0 0 14
2 7 0 10 15 0 0
3 9 10 0 11 0 2
4 0 15 11 0 6 0
5 0 0 0 6 0 9
6 14 0 2 0 9 0

Реализация на C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#define SIZE 6
int main()
{
  int a[SIZE][SIZE]; // матрица связей
  int d[SIZE]; // минимальное расстояние
  int v[SIZE]; // посещенные вершины
  int temp, minindex, min;
  int begin_index = 0;
  system("chcp 1251");
  system("cls");
  // Инициализация матрицы связей
  for (int i = 0; i<SIZE; i++)
  {
    a[i][i] = 0;
    for (int j = i + 1; j<SIZE; j++) {
      printf("Введите расстояние %d - %d: ", i + 1, j + 1);
      scanf("%d", &temp);
      a[i][j] = temp;
      a[j][i] = temp;
    }
  }
  // Вывод матрицы связей
  for (int i = 0; i<SIZE; i++)
  {
    for (int j = 0; j<SIZE; j++)
      printf("%5d ", a[i][j]);
    printf("\n");
  }
  //Инициализация вершин и расстояний
  for (int i = 0; i<SIZE; i++)
  {
    d[i] = 10000;
    v[i] = 1;
  }
  d[begin_index] = 0;
  // Шаг алгоритма
  do {
    minindex = 10000;
    min = 10000;
    for (int i = 0; i<SIZE; i++)
    { // Если вершину ещё не обошли и вес меньше min
      if ((v[i] == 1) && (d[i]<min))
      { // Переприсваиваем значения
        min = d[i];
        minindex = i;
      }
    }
    // Добавляем найденный минимальный вес
    // к текущему весу вершины
    // и сравниваем с текущим минимальным весом вершины
    if (minindex != 10000)
    {
      for (int i = 0; i<SIZE; i++)
      {
        if (a[minindex][i] > 0)
        {
          temp = min + a[minindex][i];
          if (temp < d[i])
          {
            d[i] = temp;
          }
        }
      }
      v[minindex] = 0;
    }
  } while (minindex < 10000);
  // Вывод кратчайших расстояний до вершин
  printf("\nКратчайшие расстояния до вершин: \n");
  for (int i = 0; i<SIZE; i++)
    printf("%5d ", d[i]);

  // Восстановление пути
  int ver[SIZE]; // массив посещенных вершин
  int end = 4; // индекс конечной вершины = 5 - 1
  ver[0] = end + 1; // начальный элемент - конечная вершина
  int k = 1; // индекс предыдущей вершины
  int weight = d[end]; // вес конечной вершины

  while (end != begin_index) // пока не дошли до начальной вершины
  {
    for (int i = 0; i<SIZE; i++) // просматриваем все вершины
      if (a[i][end] != 0)   // если связь есть
      {
        int temp = weight - a[i][end]; // определяем вес пути из предыдущей вершины
        if (temp == d[i]) // если вес совпал с рассчитанным
        {                 // значит из этой вершины и был переход
          weight = temp; // сохраняем новый вес
          end = i;       // сохраняем предыдущую вершину
          ver[k] = i + 1; // и записываем ее в массив
          k++;
        }
      }
  }
  // Вывод пути (начальная вершина оказалась в конце массива из k элементов)
  printf("\nВывод кратчайшего пути\n");
  for (int i = k - 1; i >= 0; i--)
    printf("%3d ", ver[i]);
  getchar(); getchar();
  return 0;
}

Результат выполнения
Алгоритм Дейкстры

Прокрутить вверх