Организация и модели памяти, адресация

Организация и модели памяти, адресация

Память – способность объекта обеспечивать хранение данных.
Все объекты, над которыми выполняются команды, как и сами команды, хранятся в памяти компьютера.

Память состоит из ячеек, в каждой из которых содержится 1 бит информации, принимающий одно из двух значений: 0 или 1. Биты обрабатывают группами фиксированного размера. Для этого группы бит могут записываться и считываться за одну базовую операцию.  Группа из 8 бит называется .
Расположение битов в байте
Байты последовательно располагаются в памяти компьютера.

  • 1 килобайт (Кбайт) = 210 = 1 024 байт
  • 1 мегабайт (Мбайт) = 210 Кбайт = 220 байт = 1 048 576 байт
  • 1 гигабайт (Гбайт) = 210 Мбайт = 230 байт = 1 073 741 824 байт

 
Для доступа к памяти с целью записи или чтения отдельных элементов информации используются идентификаторы, определяющие их расположение в памяти. Каждому идентификатору в соответствие ставится адрес. В качестве адресов используются числа из диапазона от 0 до 2k-1  со значением k, достаточным для адресации всей памяти компьютера.Все 2k адресов составляют адресное пространство компьютера.

Способы адресации байтов

Существует прямой и обратный способы адресации байтов.
При обратном способе адресации байты адресуются слева направо, так что самый старший (левый) байт слова имеет наименьший адрес.
Обратная адресация


Прямым способом называется противоположная система адресации. Компиляторы высокоуровневых языков поддерживают прямой способ адресации.
Прямая адресация
Объект занимает целое слово. Поэтому для того, чтобы обратиться к нему в памяти, нужно указать адрес, по которому этот объект хранится.

Организация памяти

Физическая память, к которой микропроцессор имеет доступ по шине адреса, называется оперативной памятью ОП (или оперативным запоминающим устройством - ОЗУ).
Механизм управления памятью полностью аппаратный, т.е. программа сама не может сформировать физический адрес памяти на адресной шине.
Микропроцессор аппаратно поддерживает несколько моделей использования оперативной памяти:

  • сегментированную модель
  •  страничную модель
  •  плоскую модель

В сегментированной модели память для программы делится на непрерывные области памяти, называемые  сегментами. Программа может обращаться только к данным, которые находятся в этих сегментах.
Сегмент представляет собой независимый, поддерживаемый на аппаратном уровне блок памяти.

Сегментация - механизм адресации, обеспечивающий существование нескольких независимых адресных пространств как в пределах одной задачи, так и в системе в целом для защиты задач от взаимного влияния.

Каждая программа в общем случае может состоять из любого количества сегментов, но непосредственный доступ она имеет только к 3 основным сегментам и к 3 дополнительным сегментам, обслуживаемых 6 сегментными регистрами. К основным сегментам относятся:

  • Сегмент  кодов (.CODE) – содержит машинные команды для выполнения. Обычно первая выполняемая команда находится в начале этого сегмента, и операционная система передает управление по адресу данного сегмента  для выполнения программы. Регистр сегмента кодов (CS) адресует данный сегмент.
  • Сегмент данных (.DATA) – содержит определенные данные, константы и рабочие  области, необходимые программе. Регистр сегмента данных (DS) адресует данный сегмент.
  • Сегмент стека (.STACK). Стек содержит адреса возврата как для программы (для возврата в операционную систему), так и для  вызовов подпрограмм (для возврата в главную программу). Регистр сегмента стека (SS) адресует данный сегмент. Адрес текущей вершины стека задается регистрами SS:ESP.

Регистры дополнительных сегментов (ES, FS, GS), предназначены для специального использования.

Для доступа к данным внутри сегмента обращение производится относительно начала сегмента линейно, т.е. начиная с 0 и заканчивая адресом, равным размеру сегмента. Для обращения к любому адресу в программе, компьютер складывает адрес в регистре сегмента и смещение - расположение требуемого адреса относительно начала сегмента. Например, первый байт в сегменте кодов имеет смещение 0, второй байт – 1 и так далее.

Таким образом, для обращения к конкретному физическому адресу ОЗУ необходимо определить адрес начала сегмента и смещение внутри сегмента.
Физический адрес принято записывать парой этих значений, разделенных двоеточием

сегмент : смещение

Страничная модель памяти – это надстройка над сегментной моделью. ОЗУ делится на блоки фиксированного размера, кратные степени 2, например 4 Кб. Каждый такой блок называется страницей. Основное достоинство страничного способа распределения памяти - минимально возможная фрагментация. Однако такая организация памяти не использует память достаточно эффективно за счет фиксированного размера страниц.

Плоская модель памяти предполагает, что задача состоит из одного сегмента, который, в свою очередь, разбит на страницы.
Достоинства:

  • при использовании плоской модели памяти упрощается создание и операционной системы, и систем программирования;
  • уменьшаются расходы памяти на поддержку системных информационных структур.

В абсолютном большинстве современных 32(64)-разрядных операционных систем (для микропроцессоров Intel) используется плоская модель памяти.

Модели памяти

Директива .MODEL определяет модель памяти, используемую программой. После этой директивы в программе находятся директивы объявления сегментов (.DATA, .STACK, .CODE, SEGMENT). Синтаксис задания модели памяти

.MODEL  модификатор МодельПамяти СоглашениеОВызовах

Параметр МодельПамяти является обязательным.

Основные модели памяти:

Модель памяти Адресация кода Адресация данных Операци-
онная система
Чередование кода и данных
TINY NEAR NEAR MS-DOS Допустимо
SMALL NEAR NEAR MS-DOS, Windows Нет
MEDIUM FAR NEAR MS-DOS, Windows Нет
COMPACT NEAR FAR MS-DOS, Windows Нет
LARGE FAR FAR MS-DOS, Windows Нет
HUGE FAR FAR MS-DOS, Windows Нет
FLAT NEAR NEAR Windows NT, Windows 2000, Windows XP, Windows Vista Допустимо

Модель tiny работает только в 16-разрядных приложениях MS-DOS. В этой модели все данные и код располагаются в одном физическом сегменте. Размер программного файла в этом случае не превышает 64 Кбайт.
Модель small поддерживает один сегмент кода и один сегмент данных. Данные и код при использовании этой модели адресуются как near (ближние).
Модель medium поддерживает несколько сегментов программного кода и один сегмент данных, при этом все ссылки в сегментах программного кода по умолчанию считаются дальними (far), а ссылки в сегменте данных — ближними (near).
Модель compact поддерживает несколько сегментов данных, в которых используется дальняя адресация данных (far), и один сегмент кода с ближней адресацией (near).
Модель large поддерживает несколько сегментов кода и несколько сегментов данных. По умолчанию все ссылки на код и данные считаются дальними (far).
Модель huge практически эквивалентна модели памяти large.

Особого внимания заслуживает модель памяти flat, которая используется только в 32-разрядных операционных системах. В ней данные и код размещены в одном 32-разрядном сегменте. Для использования в программе модели flat перед директивой .model flat следует разместить одну из директив:

  • .386
  • .486
  • .586
  • .686

Желательно указывать тот тип процессора, который используется в машине, хотя это не является обязательным требованием. Операционная система автоматически инициализирует сегментные регистры при загрузке программы, поэтому модифицировать их нужно только в случае если требуется смешивать в одной программе 16-разрядный и 32-разрядный код. Адресация данных и кода является ближней (near), при этом все адреса и указатели являются 32-разрядными.

Параметр модификатор используется для определения типов сегментов и может принимать значения use16 (сегменты выбранной модели используются как 16-битные) или use32 (сегменты выбранной модели используются как 32-битные).

Параметр СоглашениеОВызовах используется для определения способа передачи параметров при вызове процедуры из других языков, в том числе и языков высокого уровня (C++, Pascal). Параметр может принимать следующие значения:

  • C,
  • BASIC,
  • FORTRAN,
  • PASCAL,
  • SYSCALL,
  • STDCALL.

При разработке модулей на ассемблере, которые будут применяться в программах, написанных на языках высокого уровня, обращайте внимание на то, какие соглашения о вызовах поддерживает тот или иной язык. Используются при анализе интерфейса программ на ассемблере с программами на языках высокого уровня.

Прокрутить вверх